

MULTIFUNCTIONAL LANDSCAPES AND POLICY INSTRUMENTS

Andrea Früh-Müller, Christian Krippes, Stefan Hotes, Lutz Breuer, Volkmar Wolters, Thomas Köllner

IALE-D Annual Conference in Bonn, 20th to 23rd October 2015

BACKGROUND

Increasing concern over environmental impact of land use led to different policy approaches:

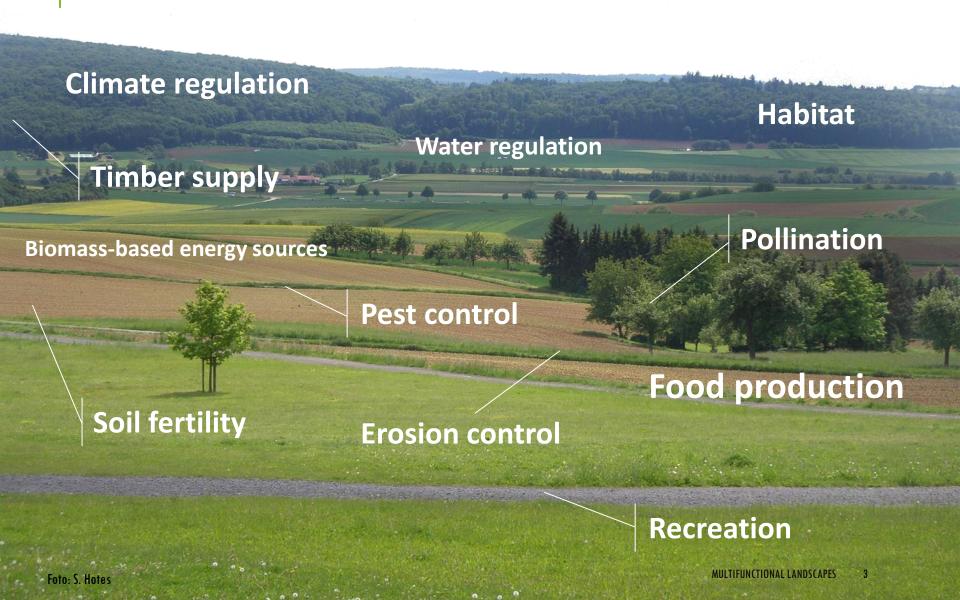
High proportion of conservation areas

- 15.4 % of terrestrial area Natura 2000 (BfN 2015)
- 45 % of marine area Natura 2000 (BfN 2015)

High amount of public spending

CAP Pillar 1 (2014-2020)

• 5 billion € yr⁻¹ for Germany (BMEL, 2014)


CAP Pillar 2 (2014-2020)

• 1.3 billion € yr⁻¹ for Germany (BMEL, 2014, 2014)

Effectiveness of current policy instruments is debated

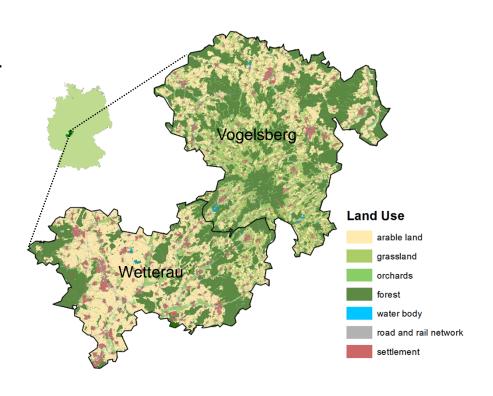
- Focus on single environmental objective (Galler et al. 2015)
- Often not spatially targeted (Batary et al. 2015)

MULTIFUNCTIONAL LANDSCAPE

MULTIFUNCTIONAL LANDSCAPE

Assessment of the relationship between ecosystem services and the implementation of policy instruments

- 1. How are services distributed across the landscape and how do they interact?
- Which policy instruments are aiming for sustaining ES provision and where are they implemented?

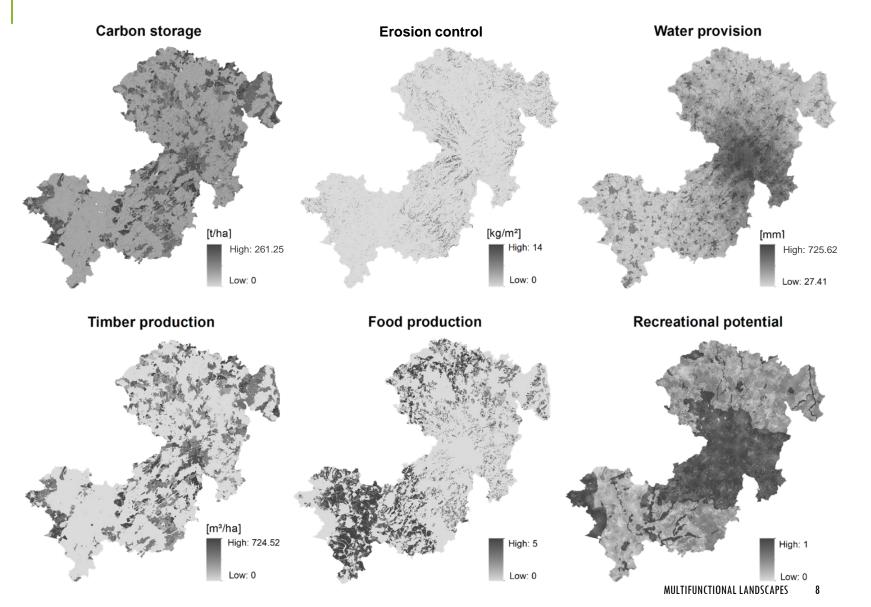


STUDY REGION

Assessment of ecosystem functioning in two typical **cultural landscapes** of Central Europe with contrasting biogeographic and socio-economic conditions:

- Wetterau (Hesse) fertile soils promote intensive agriculture esp.
 crop production; several creeks and rivers within region;
- Vogelsberg (Hesse) rural area affected by demographic changes (emigration); dominating land cover types are forests and grasslands; low population density;

- 1. How are services distributed across the landscape and how do they interact?
 - > Spatially explicit assessment of multiple ecosystem services
 - Analysis of spatial patterns and interactions among ES


ASSESSMENT OF ES PROVISION

	Ecosystem service	Indicator	Description	Unit
	Global climate regulation	Carbon storage	C in aboveground biomass	[t/ha]
Regulating		(Sharp et al., 2014)	C in belowground biomass	[t/ha]
			C stored in soil (30 cm below ground)	[t/ha]
	Water quality regulation	Erosion control	Sediment retained by permanent vegetation	[kg/m²]
		(Sharp et al., 2014)	types	
Provisioning	Freshwater supply	Water yield	Surface water yield (Mean annual precipitation -	[mm]
		(Sharp et al., 2014)	mean annual evapotranspiration)	
	Provision of biomass	Timber supply	Solid cubic meter of timber	[m³/ha]
		(FENA, 2014)		
Pro	Food production	Crop production	Soil fertility of arable land	[m²]
		(Friedrich & Vorderbrügge, 2012)		
Cultural	Outdoor recreation	Recreational	Degree of naturalness	[m²]
		potential	Protected areas	[m²]
		(Paracchini et al., 2014)	Attractiveness of water	[m²]
				_

ASSESSMENT OF ES PROVISION

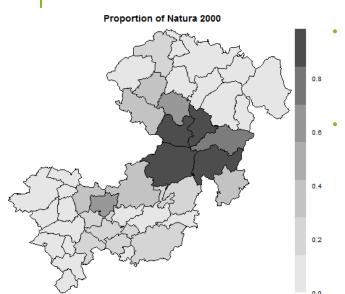
TOTAL ES PROVISION

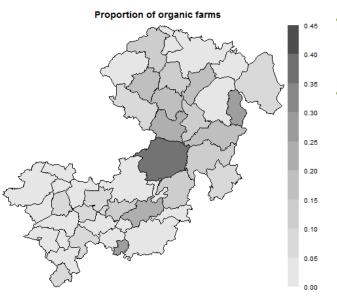
Total Ecosystem Service Value

Capacity to provide multiple services (see Maes et al., 2012)

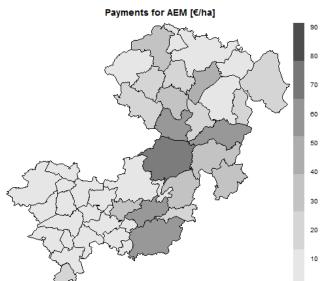
- Regions with intensive agriculture; possible tradeoff effects
- + Regions of high proportion of grassland, woodland and forest;

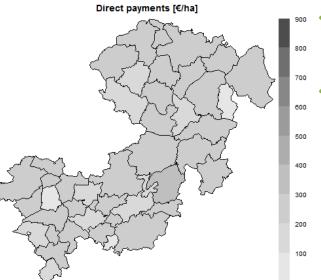
- 2. Which policy incentives are aiming for sustaining ES provision and where are they implemented?
 - Identification of policy incentives
 - Analysis of spatial concordance between multiple ES and policy incentives


POLICY INSTRUMENTS


Туре	Indicator per municipality	named objective i.a.	Reference
Biodiversity conservation	Proportion of Natura 2000 network	`sustainable management'	EEA, 2014
Organic agricultural production	Proportion of organic agricultural holdings	`environmental friendly agriculture'	Hessische Gemeindestati stik, 2015
Agri-envi. schemes	Payments for Agri-Environmental Schemes / total agricultural area	`provision of non- commodity outputs' `environmental friendly management practices'	BLE, 2015
CAP direct payments	Sum of direct payments / total agricultural area	`multifunctional agriculture'	BLE, 2015

POLICY INSTRUMENTS




- Establishment especially in mountainous regions
- Proportions of protected areas up to 93 %

- No use of this management in some munic.
- Proportions of organic farms up to 45 %

- No use of this environmental market initiative in some munic.
- Payments up to 75 € ha⁻¹
- Overall sum:
 2,81 Mio €
 (2014)

- Equal distribution across space
- Overall sum: 31.87 Mio € (2014)

12

POLICY INSTRUMENTS

Spatial correlation of Total Ecosystem Service Value and policy instruments Proportion of Natura 2000, Payments for AEM, Proportion of organic farming and Direct payments. All significant correlations are indicated by * (Modified t-test for spatial correlations, N = 44, p<0.05).

	TESV	Proportion of Natura 2000	Payments AEM	for	Proportion of organic farms	Direct payments
TESV	1					
Proportion of Natura 2000	0.44	1				
Payments for AEM	0.58 *	0.56 *	1			
Proportion of organic farms	0.43	0.45 *	0.70 *		1	
Direct payments	0.02	0.03	0.28		-0.28	1

- 2. Which policy incentives are aiming for sustaining ES provision and where are they implemented?
 - Spatial concordance of:
 - TESV and Payments for AEM;
 - Proportion of Natura 2000, Payments for AEM & Proportion of organic farms;
 - No spatial correlation of TESV and direct payments;

CONCLUSION

- Policy instruments (Natura 2000, organic farming and AEM)
 especially implemented in regions which provide higher levels of
 multiple ecosystem services
- Current policy instruments support land sparing
- Instruments to support economically underdeveloped region
- → Need for a better targeting regime of policy instruments?
- → "land sharing" versus "land sparing"?

References

- Bundesamt für Naturschutz, 2015. Zum Stand der Umsetzung von Natura 2000 in Deutschland. 19.10.2015. https://www.bfn.de/0316_gebiete.html
- European Commission, 2013. Overview of CAP Reform 2014 e 2020. Agricultural Policy Perspectives Brief No. 5. December 2013. http://ec.europa.eu/agriculture/
- German Federal Ministry of Food and Agriculture (BMEL), 2014. http://www.bmel.de/DE/Landwirtschaft/Agrarpolitik/_Texte/GAP-FAQs.html (July 15th, 2014).
- Galler, C., Haaren, C. von, Albert, C., 2015. Optimizing environmental measures for landscape multifunctionality: effectiveness, efficiency and recommendations for agrienvironmental programs. Journal of Environmental Management 151, 243–257.
- Batáry, P., Dicks, L.V., Kleijn, D., Sutherland, W.J., 2015. The role of agri-environment schemes in conservation and environmental management. Conservation biology: the journal of the Society for Conservation Biology 29 (4), 1006–1016.
- Maes, J., Paracchini, M.L., Zulian, G., Dunbar, M.B., Alkemade, R., 2012. Synergies and trade-offs between ecosystem service supply, biodiversity, and habitat conservation status in Europe. Biological Conservation 155, 1–12.
- Raudsepp-Hearne, C., Peterson, G.D., Bennett, E.M., 2010. Ecosystem service bundles for analyzing tradeoffs in diverse landscapes. P Natl Acad Sci USA 107 (11), 5242–5247.